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Abstract

Background: Utilizating the plant microbiome to enhance pathogen resistance in crop production is an emerging
alternative to the use of chemical pesticides. However, the diversity and structure of the microbiota, and the
assembly mechanisms of root-associated microbial communities of plants are still poorly understood.

Results: We invstigated the microbiota of the root endosphere and rhizosphere soils of the rice cultivar
Nipponbare (NPB) and its Piz-t-transgenic line (NPB-Piz-t) when infected with the filamentous fungus Magnaporthe
oryzae (M. oryzae) isolate KJ201, using 16S rRNA and internal transcribed spacer 1 (ITS1) amplicon sequencing. The
rhizosphere soils showed higher bacterial and fungal richness and diversity than the endosphere except for fungal
richness in the rhizosphere soils of the mock treatment. Bacteria richness and diversity increased in the endospheric
communities of NPB and Piz-t under inoculation with KJ201 (referred to as ‘NPB-KJ201" and ‘Piz-t-KJ201’,
respectively) compared with the corresponding mock treatments, with the NPB-KJ201 showing the highest diversity
in the four bacterial endocompartments. In contrast, fungal richness and diversity decreased in the endospheric
communities of NPB-KJ201 and Piz-t-KJ201, relative to the corresponding mock treatments, with NPB-KJ201 and Piz-
t-KJ201 having the lowest richness and diversity, respectively, across the four fungal endocompartments. Principal
component analysis (PCA) indicated that the microbiota of Piz-t-KJ201 of root endophytes were mostly
remarkablely distinct from that of NPB-KJ201. Co-occurrence network analysis revealed that the phyla Proteobacteria
and Ascomycota were the key contributors to the bacterial and fungal communities, respectively. Furthermore, a
comparative metabolic analysis showed that the contents of tryptophan metabolism and indole alkaloid
biosynthesis were significantly lower in the Piz-t-KJ201 plants.

(Continued on next page)

* Correspondence: tdg@fjage.org; wangzh@fafu.edu.cn

'State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops,
College of Life Science, Fujian Agriculture and Forestry University, Fuzhou,
China

Full list of author information is available at the end of the article

. © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
@ SPrlnger Open which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
— appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12284-021-00486-9&domain=pdf
http://orcid.org/0000-0001-9905-1331
http://creativecommons.org/licenses/by/4.0/
mailto:tdg@fjage.org
mailto:wangzh@fafu.edu.cn

Tian et al. Rice (2021) 14:40

Page 2 of 15

(Continued from previous page)

soil microorganisms.

Conclusions: In this study, we compared the diversity, composition, and assembly of microbial communities
associated with the rhizosphere soils and endosphere of Piz-t-KJ201 and NPB-KJ201. On the basis of the different
compositions, diversities, and assemblies of the microbial communities among different compartments, we propose
that the host genotype and inoculation pattern of M. oryzae played dominant roles in determining the microbial
community assemblage. Further metabolomics analysis revealed that some metabolites may influence changes in
bacterial communities. This study improves our understanding of the complex interactions between rice and M.
oryzae, which could be useful in developing new strategies to improve rice resistance through the manipulation of
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Background

Plant pathogens are an ever-increasing threat to crop
production; hence, there is an urgent need to suppress
disease under natural plant conditions. To achieve this,
the root-associated microbiome, has been suggested as a
disease-control alternative owing to its antagonistic abil-
ities, which have been described for various soil-borne
pathogens, including fungi, bacteria, oomycetes, and
nematodes (Carrion et al. 2019; Cha et al. 2016; Chapelle
et al.,, 2016; Innerebner et al. 2011; Kwak et al. 2018). Al-
though interactions among the root endosphere, soil
microbiota, and plant metabolites have the potential to
dynamically affect disease outcomes (Bai et al. 2015), lit-
tle is known about the real diversity of microbial com-
munities associated with exophytic and endophytic
compartments, the factors driving community assem-
blages, or the correlation between metabolites and the
abundance of bacterial and fungal microbiomes.

The rice blast fungus M. oryzae (Ascomycota), a global
hemibiotrophic plant fungal pathogen, causes serious
blast disease at any time during rice production (Ou,
1980). Its infection is usually started in plant tissues via
its germinated spores and then develops appressoria,
allowing hyphae to invade the tissues and cause host cell
death (Foster et al. 2016). Eevn without the formation of
appressoria, several studies have demonstrated that
M.oryzae still triggers a diverse array of immune re-
sponses in rice through pattern-recognition receptors,
including altering energy metaobolism and defense-
related proteins, homrone signals, ROS (Reactive Oxy-
gen Species) generation or transcriptional reprogram-
ming processes, and even affecting the level of the root
microbiome (Cao et al. 2016; Koga et al. 2004; Marcel
et al. 2010; Mallon et al. 2015; Nasir et al. 2017; Sesma
and Osbourn, 2004; Yang et al. 2013).

The systemic nature of the interaction between patho-
gens and plant responses results in a tight linkage be-
tween leaf and root events. For example, infection of the
leaves with Epichloe coenophiala changed the root mi-
crobial communities (Rojas et al. 2016), and whitefly in-
festation of pepper decreased infection by root bacterial

pathogens (Yang et al. 2011). Alternatively, rhizosphere
communities may affect the outcome of leaf interactions.
For example, applying nematodes to the soil can reduce
aphids on the leaves (Hol et al. 2013), and mycorrhizae
and nitrogen-fixing bacteria in bean plants can lead to
the attraction of mites (Khaitov et al. 2015). These re-
sults suggest that, after infections by phytopathogens,
host plants recruit specific beneficial microbiota that en-
able them to resist and withstand diseases caused by
these organisms (Berg et al. 2016). As M. oryzae is cap-
able of infecting both the leaves and roots of rice plants,
development of the rice—-M. oryzae pathosystem would
have significant implications for scientific development
and disease control (Sesma and Osbourn, 2004). More-
over, this system would allow us to explore whether the
metabolites involved in plant defense of the leaves are
liked to root-associated microbiota.

The rice blast R gene Piz-t, a member of the Pi2/9
multiallelic gene family, encodes a NOD-like receptor
protein that specifically recognizes the M. oryzae effector
protein AvrPiz-t (Zhou, 2016; Qu et al. 2006). Previous
studies have widely utilized the NPB-KJ201 and Piz-t-
KJ201 pathosystems for gene cloning, gene validation,
and proteomic and transcriptional analysis (Zhou et al.
2006; Tian et al. 2016, 2018), because they exhibit high
stability for susceptibility and resistance responses.
Therefore, they are ideal choices for exploring the
microbiome profile underlying the rice-M. oryzae
pathosystem.

To explore the manner by which individual taxa within
root-associated microbiota contribute to the interaction
between rice and M. oryzae, we used an indoor inocula-
tion system to minimize the possibility of natural disease
factors inoculating the plant and conducted high-
throughput Illumina MiSeq sequencing to structurally
resolve rhizosphere and endosphere compartments. The
datasets from the eight different compartments were
used to identify putative microbial consortia involved in
the interaction between genotype and inoculation. In
addition, we also performed comparative untargeted
metabolomics among the inoculated and mock
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treatment plants of NPB and NPB-Piz-t., we also investi-
gated changes in metabolites and their relation to the
subsequent assemblage of bacteria and fungi. The three-
way interactions among root endophytic communities,
rhizospheric communities, and the metabolites are key
elements determining the outcome of disease.

Results

The Overall Microbial Communities from Root
Rhizosphere Soils and Endosphere Compartments
Exhibited Different Characteristics

We sampled the root-associated microbial communities
when the NPB-KJ201 plants were fully diseased and ana-
lyzed the bacterial and fungal microbiota from rhizo-
sphere soils and the endosphere (Fig. 1 a, Table 1).
Microbial community composition was assessed through
amplicon sequencing of the bacterial V3-V4 region and
the fungal ITS1 region in the nuclear ribosomal repeat
unit. To compare the diversity indices, we normalized
the bacterial and fungal sequence numbers of each sam-
ple to 9, 497 and 63, 153 reads, respectively (the fewest
among the 24 samples), and the numbers of operational
taxonomic units (OTUs) per sample are also shown in
Table 1 and Additional Table 1. The rarefaction curves
suggested that the sequencing depth was sufficient to
cover most of the detected species (Fig. 1 b).

Overall, the bacterial and fungal cores contained 206
and 265 OTUs, respectively, which were present in all of
the samples (Fig. 1C1 and C2). Analysis of these data
yielded 54 and 18 taxonomic classifications at the
phylum level in the bacterial and fungal communities,
respectively (Additional Table 2). To summarize the dis-
tribution of dominant phyla across the eight compart-
ments, taxa ranks with over 1% relative richness across
all compartments were listed. Figure 2 shows the distri-
bution of reads and the proportion of distinct taxa in
each compartment. Based on read abundance, Proteo-
bacteria and Ascomycota were the most abundant bac-
terial and fungal taxa, respectively, in all of the
compartments. The Piz-t-KJ201 had a higher abundance
of Proteobacteria but a lower abundance of Ascomycota
than NPB-KJ201(Fig. 2).

In general, microbial communities in the rhizosphere
soils had higher diversity than those in the root endo-
sphere. However, the rhizosphere soils of the mock
treatments had lower fungal richness than the corre-
sponding endospheric communities (Fig. 3, Additional
Table 3). Further study found that bacterial richness and
diversity were higher in the endospheric communities of
NPB-KJ201 and Piz-t-KJ201 than the corresponding
mock treatments, and that NPB-KJ201 had the highest
richness and diversity in the four bacterial endocompart-
ments. Conversely, fungal richness and diversity were
lower in the endospheric communities of NPB-KJ201
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and Piz-t-KJ201 compared with the corresponding mock
treatments, and the endospheric communities of NPB-
KJ201 and Piz-t-KJ201 had the lowest richness and di-
versity in the four fungal endocompartments (Fig. 3).
The results were confirmed by analysis of similarities
(ANOSIM) comparisons of bacterial and fungal commu-
nities among these compartments (Additional Fig. 1,
Additional Table 3).

The Differential Ascomycota OTUs Were Dominant in the
Endophytes of NPB-KJ201 and the Rhizospheric Soils of
Piz-T-KJ201

For the fungal communities, 1260 and 1291 common
OTUs were located in the Venn overlaps of different
abundant OTUs across endocompartments and rhizo-
compartments, respectively (Additional Fig. 2). The re-
sults from PCA showed that rhizocompartments and
endocompartments could be clearly separated by PCl,
and the fungal endospheric community of Piz-t-KJ201
was obviously segregated by PC2 from the other three
communities; PC1 and PC2 explained 38.8% and 9.28%
of the relative variance, respectively (Fig. 4 a, Additional
Table 4). These results demonstrated that inoculation
and genotype influenced fungal communities.

There were great differences in richness and diversity
among these compartments. The endospheric communi-
ties of KJ201 treatments had lower diversity and richness
compared to their corresponding mock treatments, and
the endospheric communities of NPB-KJ201 and Piz-t-
KJ201 had the lowest richness and diversity, respectively
(Fig. 2). Additionally, the network of endospheric com-
munities (Fig. 4 b -right) was much larger, with a higher
number of nodes and edges compared to the network of
rhizosphere soils. The global statistics of the co-
occurrence networks of the rhizosphere soils and endo-
spheric communities are shown in Fig. 4 b. In rhizo-
sphere soils, the major hub fungus was affiliated with the
phyla Ascomycota, Glomeromycota, Basidiomycota,
Entorrhizomycota, and Mortierellomycota (Fig. 4 b -left).
In endospheric communities, the major hub fungus was
affiliated with the phyla Ascomycota, Basidiomycota,
Chytridiomycota, Glomeromycota, and Mortierellomy-
cota (Fig. 4 b -right). Ascomycota was mainly enriched
in the endospheric communities of NPB-KJ201, suggest-
ing the multiple hinges between fungal inoculation and
the host genotype. Furthermore, the rhizosphere soil
communities of NPB-KJ201 and Piz-t-KJ201 were
enriched by different fungal taxa of the phylum Ascomy-
cota (Fig. 4 b). In addition, the richness of the KJ201
treatment was higher than that of the corresponding
mock treatment in the rhizosphere soils, which can be
attributed to some fungal spores landing on the soil and
infecting rhizosphere soils during the inoculation assay.
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Fig. 1 Disease phenotype of NPB-KJ201 and Piz-t- KJ201 and the data analysis of each compartment. a Phenotype of NPB-KJ201 and Piz-t-KJ201
at 7 days post inoculation. b Rarefaction curves of each samples. The rarefaction curves were constructed based on read numbers for each OTU. ¢
The QTU_flowers of fungal and bacterial compartments. Each petal represents a Sample, the core number in the middle represents the number
of OTU common to all samples, and the number on the petal represents the number of OTU unique to the sample. Bacterial compartment,
A:NPB-Mock-B.R, B: Pizt-Mock-B.R, C: NPB-KJ201-BR, D: Piz-t-KJ201-B.R, ENPB-Mock-B.E, F: Pizt-Mock-B.E, G: NPB-KJ201-B.E, H: Piz-t-KJ201-B.E; Fungal
compartment, A:NPB-Mock-F.R, B: Pizt-Mock-F.R, C: NPB-KJ201-F R, D: Piz-t-KJ201-F R, ENPB-Mock-F.E, F: Pizt-Mock-F.E, G: NPB-KJ201-F E,
H: Piz-t-KJ201-F.E
J

Linear discriminant analysis effect size (LEFSE, Wil-
coxon rank sum test, p<0.05, LDA score>3) was
employed to identify fungal community biomarkers based
on the 8 compartments of data. Seven significantly differ-
ent groups of fungi were enriched in the endospheric
communities of Piz-t-KJ201, including one Fungi_sp., one
Schizothecium and 5 unidentified fungi (from phylum to
family)(Fig. 4 ¢, Additional Fig. 3). In contrast, the endo-
spheric communities of NPB-KJ201 consisted of Sordario-
mycetes, Sordariales, Ascomycota, Lasiosphaeriaceae,
Lasiosphaeriaceae_sp, and Dothideomycetes_sp, all of

which belong to the phylum Ascomycota, and four other
unidentified groups (from order to genus) (Fig. 4 b,
Additional Fig. 3), suggesting that the phylum Ascomycota
strongly dominated fungal microbiota in the endospheric
communities of NPB-KJ201.

Taken together, the above results revealed that both
the host genotype and fungal inoculation determined
the fungal components and assemblages of the endo-
spheric communities, and that some Ascomycota
OTUs in the endospheric communities of NPB-KJ201
may be associated with susceptibility.
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Table 1 The eight samples and their sequencing OTUs in rhizospheric and endospheric microbiota
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Bacterial Compartments Rhizosphere
NPB-Mock-BR/ A Pizt-Mock-B.R/ B
1930.33 +42.44 1801 +78.86
Endospere
NPB-Mock-B.E/E Pizt-Mock-B.E/F
1602.67 £ 61.60 1651 +57.19
Fungal compartments Rhizosphere
NPB-Mock-F.R/ A Pizt-Mock-F.R/ B
1684.33 + 338.75 1635+ 189.14
Endospere

NPB-Mock-F.E/E
1736.33 +180.90

Pizt-Mock-F.E/F
157233 +57.57

NPB-KJ201-BR/ C
191033 +51.33

NPB-KJ201-BE/G
173667 +57.81

NPB-KJ201-F.R/ C
1656 +22.11

NPB-KJ201-F.E/G
143833 +90.59

Piz-t-KJ201-B.R/D
193633 £57.45

Piz-t-KJ201-B.E/H
1678 + 8347

Piz-t-KJ201-F.R/D
1597 £150.74

Piz-t-KJ201-F.E/H
154067 £ 14591

More Abundant Proteobacteria and Chloroflexi Taxa Were
Separately Enriched in the Endophytes of Piz-T-KJ201 and
NPB-KJ201

In addition to a comparison with fungi in those com-
partments, another major aim of identifying the bacterial
communities was to find specialized bacterial groups
that were affected by fungal inoculation. There were
noteworthy overlaps in different abundant OTUs of the
bacterial communities across rhizocompartments and
endocompartments, with 3345 and 1288 common OTUs
differentially enriched, respectively (Additional Fig. 2).
Further PCA was performed to show the differences in
microbial community patterns among the eight com-
partments (Fig. 5 a, Additional Table 4). The PCA axes
in the eight compartments explained 50.31% of the total
variation in the microbial community. PC1 segregated
the rhizocompartments and endocompartments, and
PC2 segretated each of the four groups, with 44.99%,

In contrast to the fungal communities, bacterial rich-
ness and diversity in the KJ201 treatment were higher
than in the corresponding mock treatments in nearly all
of the eight of the compartments; the one exception was
the richness of the rhizocompartment of the NBP-KJ201,
which was lower than that under the mock treatments,
suggesting that the fungal inoculation enriched the bac-
terial communities in most of the KJ201 treatment
plants, and particularly for the endospheric communities
in NPB-KJ201, which had the highest richness and diver-
sity of the four endocompartments (Fig. 3).

Next, the network of the rhizosphere soils (Fig. 5 b
-left) was much larger, with a higher number of nodes
and edges compared with the endospheric communities,
as shown in Fig. 5 b. In rhizosphere soils, the major hub
bacteria were affiliated with the phyla Actinobacteria,
Proteobacteria, Chloroflexi, Planctomycetes, Nitrospirae,
Bacteroidetes, and Spirochaetae (Fig. 5 b -left). In
endospheric communities, the major hub bacteria were
affiliated with the phyla Firmicutes, Spirochaetae,

bacterial compartment

100

80
1

and 5.32% of the relative variance explained, respectively

(Fig. 5 a, Additional Table 4).
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Proteobacteria, Actinobacteria, Acidobacteria and Chlor-
oflexi (Fig. 5 b -right), from which we found that Proteo-
bacteria was the most obviously enriched, regardless of
whether they were in the rhizosphere soils or endo-
spheric communities. Further analysis with LEFSE
showed that significant Proteobacteria taxa (Wilcoxon
rank sum test, p <0.05, LDA score >3) were primarily
enriched by healthy plants, such as the endospheric
communities of NBP-mock and the rhizosphere soils of
Piz-t-KJ201, while in the diseased NPB-KJ201, the endo-
spheric bacteria were mainly enriched by the bacterial
lineages of Chloroflexi (Fig. 5 ¢, Additional Fig. 4). Thus,
host genotype and fungal inoculation drove the variables
for bacterial community assemblage, and the dominant

Proteobacteria and Chloroflexi taxa may potentially be
associated with the development of disease.

Tryptophan Metabolism Is Associated with Microbial
Differences

Metabolites can act as key substrates or signaling
molecules that affect microbial composition (Hu et al.
2018), and endophytes can also produce or consume
diverse classes of plant-associated secondary metabo-
lites (Jain and Pundir, 2017). Therefore, it was neces-
sary to test the hypothesis that the composition and
concentrations of metabolites differed between Piz-t-
KJ201 and NPB-KJ201. The results revealed that there
were 78 and 52 differentially expressed metabolites
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(DEMs) in Piz-t-KJ201 and NPB-KJ201, compared to
the mock treatments, respectively, among which 22
were shared (Fig. 6 a, Additional Table 5).

Among the shared DEMs, both N-cis-sinapoyltyramine
and N-cis-feruloyltyramine were the most significantly
downregulated compounds in Piz-t-KJ201 compared to

NPB-KJ201, with fold change values of 0.000045 and
0.000055, respectively (P <0.05). Additional KEGG enrich-
ment analysis showed that metabolic pathways, biosynthesis
of secondary metabolism, glycerophospholipid metabolism,
glycerolipid metabolism, and tryptophan metabolism were
the most significant pathways in NPB-KJ201 compared with
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mock treatments (Fig. 6 b, Additional Table 6), while meta-  metabolism and indole alkaloid biosynthesis (Fig. 6 d, Add-
bolic pathways, fatty acid biosynthesis, and tryptophan me- itional Table 6).

tabolism were the most significant suppressed pathways in A previous study demonstrated that tryptophan
Piz-t-KJ201 compared with mock treatments (Fig. 6 c, Add- metabolism was influenced by the compositional back-
itional Table 6). Furthermore, in comparing Piz-t-KJ201 to  ground of the bacteria, and that many key enzymes such
NPB-KJ201, the most significant pathways were tryptophan  as tryptophan hydroxylase, were involved in bacterial



Tian et al. Rice (2021) 14:40

Page 9 of 15

s
¥oadn
T0zd

Statistics of KEGG Enrichment

Tryptophan metabolism @

Tropane, piperidine and pyridine alkaloid biosynthesis {

Pyrimidine metabolism Pvalue

W5 100

Pentose and glucuronate interconversions {
Nitrogen metabolism
Linoleic acid metabolism
Inositol phosphate metabolism . 0.50
Glyoxylate and dicarboxylate metabolism
Glycerophospholipid metabolism )
Glycerolipid metabolism o
Glutathione metabolism
Fatty acid biosynthesis { ®
Ascorbate and aldarate metabolism
Arginine and proline metabolism e 2
Arachidonic acid metabolism @®:
Anthocyanin biosynthesis { . o
Aminoacyl-tRNA biosynthesis | ®:
Amino sugar and nucleotide sugar metabolism
alpha-Linolenic acid metabolism

Alanine, aspartate and glutamate metabolism

050 0.75 1.00
Rich factor

b Statistics of KEGG Enrichment
Tryptophan metabolism [ )
Sphingolipid metabolism
Pentose and glucuronate interconversions {
Metabolic pathways 4 Pvalue
Lysine degradation { BE 100
Linoleic acid metabolism . 075
Inositol phosphate metabolism
Indole alkaloid biosynthesis { ° =0
Pi)-anch ° B 0.25
Glycine, serine and threonine metabolism . 000
Glycerophospholipid metabolism )
Glycerolipid metabolism @ number
Galactose metabolism ° e
Fructose and mannose metabolism .
Fatty acid biosynthesis ® 1
Ether lipid metabolism ° [ B5
Ascorbate and aldarate metabolism @ »
Arachidonic acid metabolism
Amino sugar and nucleotide sugar metabolism
alpha-Linolenic acid metabolism
0.25 0.50 0.75 1.00
d Rich factor
Statistics of KEGG Enrichment
Zeatin biosynthesis
Vancomycin resistance .
Tryptophan metabolism ® Pvalue
Pyrimidine metabolism oy 1
Purine metabolism 075
Phenylalanine, tyrosine and tryptophan biosynthesis °

Fig. 6 Clustering and KEGG analysis of the defferentially expressed metabolisms between Piz-t-KJ201, NPB-KJ201, and their mock treated. a
Heatmap showing the relative abundance of functional categories of the four groups. b,c,d KEGG enrichment of differentially abundance
metabolisms specific to comparison NPB-KJ201/NPB-Mock, Piz-t-KJ201/Pizt-Mock, and Piz-t-KJ201/NPB-KJ201, respectively. The Rich factor is the
ratio of differentially expressed metabolites numbers annotated in this pathway term to all metabolites numbers annotated in this pathway term

Metabolic pathways

Lysine degradation . 0.25

Indole alkaloid biosynthesis ° 0.00

Glycine, serine and threonine metabolism
Glucosinolate biosynthesis

Galactose metabolism ° .

Fructose and mannose metabolism . °
Biosynthesis of secondary metabolites
Biosynthesis of amino acids ot
Benzoxazinoid biosynthesis . [ J

Arginine and proline metabolism ( ]
Aminoacyl-RNA biosynthesis [ )

ABC transporters

2-Oxocarboxylic acid metabolism

025 050 075 1.00
Rich factor

catalysis and utilization of the neurohormonal products
of the host (Taj and Jamil, 2018), which was highlighted
by the lower accumulation of N-cis-sinapoyltyramine
and N-cis-feruloyltyramine in Piz-t-KJ201 compared to
NPB-KJ201 in this study. Consequently, these metabo-
lites may influence bacterial communities that contrib-
ute to the host immune response.

Discussion

It is widely recognized that many factors shape the mi-
crobial communities of the rhizosphere and endosphere
of plant roots (Mendes et al. 2011; Lumibao et al. 2020).
The growth environment, soil composition, and host
play major roles; however, the extent to which each af-
fects the final outcome remains unclear (Edwards et al.
2015). To characterize the microbial compositions of the
rhizosphere and endosphere, and to gain insights into
the effects of fungal inoculation and host genotype on
each of the two compartments, we utilized two rice var-
ieties (NBP and NBP-Piz-t) that upon KJ201 and mock
inoculations to demonstrate the difference in microbial

communities in the rhizosphere and endosphere of NPB
and NPB-Piz-t.

By using alpha diversity analysis, our results revealed
that bacterial richness and diversity were higher in the
rhizosphere soil community than in the endophytic com-
munity (Fig. 3). Earlier studies indicate that invasion of
the soil microbiome follows a two-step selection model;
first the rhizosphere is colonized and then the roots are
invaded (Bulgarelli et al. 2013; Edwards et al. 2015; Zar-
raonaindia et al. 2015; Eyre et al. 2019). However, micro-
bial entry into rice roots is not a passive process, and
plants may select certain microbial consortia to fill the
root colonizing niche. This conclusion is supported by our
observation that the relative abundance of the phylum
Proteobacteria was increased in the endosphere compared
with the rhizosphere soil of Piz-t-KJ201, and that the rela-
tive abundances of Actinobacteria and Bacteroidetes were
decreased in the rhizosphere soil relative to the endo-
sphere (Fig. 2). Surprisingly, the richness of endosphere
fungi in the NPB-mock and Piz-t-mock treatments was
higher than in their corresponding rhizosphere soil com-
partments (Fig. 3). This phenomenon was similar to prior
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findings that may be derived from stochastic processes
(Gottel et al. 2011; He et al. 2020).

The primary aim of this study was to identify core
microbiome members for the future development of
agricultural products. Previous studies on the plant-
associated microbiome have identified large differences
between healthy and diseased individuals (Trivedi et al.
2012). However, whether these differences are the cause
or consequence of disease development remains unclear.
Although it is difficult to disentangle the potential
drivers behind this, there must be some key microbes
for rice resistance and diseased plants that are affected
by genotype, environment, or stress (Edwards et al,
2015; Zhalnina et al. 2018; Zhong et al. 2019). To assess
the major members that comprise the microbiomes, we
clustered microbes with more than 1% of the total reads
based on the abundance of phyla in each compartment.
Our results revealed that the phyla Ascomycota and Pro-
teobacteria were the most abundant within the fungal
and bacterial communities, respectively, across the eight
compartments. A further co-occurrence network ana-
lysis also supported this finding.

Typically, Ascomycota dominates the fungal commu-
nity in rice paddy fields (Jiang et al. 2016; Yuan et al.
2018), and some members of this phylun are rice patho-
gens, such as M. oryzae (Pyricularia oryzae), the causal
agent of rice blast (Chaibub et al. 2016). In general, the
sexual phase Pyricularia oryzae has a heterothallic mat-
ing system determined by a single master locus that car-
ries either a Matl—-1 or Matl-2 sequences, which leads
to a high degree of variability in disease development by
M. oryzae isolates (Bardwell, 2005; Kang et al., 1994).
Therefore, maybe the coexistence of different mating lin-
eages in the same susceptible plant may be one of the
major reasons for the increased abundance of Ascomy-
cota taxa in the endosphere of NPB-KJ201. Likewise,
Proteobacteria dominate the soil bacterial community
(Hussain et al. 2011; Jiang et al. 2016) and include im-
portant bacteria that degrade a wide range of metabo-
lites for microbial turnover (Vu et al. 2006). For
example, many proteobacterial rhizosphere isolates re-
spond to N-acyl homoserine lactone quorum-sensing
signals that act as interkingdom signals that influence
plant gene expression, induce systemic plant resistance
and affect plant growth and development (Venturi and
Fuqua, 2013). In our study, fungal inoculation induced
the plants to recruit beneficial microbes from the soil,
such as some proteobacterial lineages, to increase resist-
ance, especially in the resistant plants, which further me-
diated plant systemic resistance to deleterious fungal
colonization, as shown in Fig. 3. Thus the respective
abundances of the phylum Proteobacteria suggest that
the rhizosphere and endosphere of rice plants tend to
resist adverse external factors by becoming enriched
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with bacteria that are beneficial for growth and health.
Taken together, these results imply that inoculation with
M. oryzae and the host genotype predetermine the fu-
ture of microbial composition and structure, as previ-
ously described (Bulgarelli et al. 2012; Bouffaud et al.
2014; Lebeis et al. 2015 Xu et al. 2020; Zhong et al.
2019).

Recently, Seybold et al. (2020) found that bacterial di-
versity in leaves increased in a cultivar that was suscep-
tible to Zymoseptoria tritici a hemibiotrophic plant
pathogen, compared with a resistant cultivar, during the
biotrophic stage of infection. They suggested that
defense-related metabolites and systemic acquired resist-
ance might be involved in the decrease in bacterial di-
versity in the resistant cultivar. Our results are generally
consistent with those of a previous study; the bacterial
communities of NPB-KJ201 were more diverse than
those of Piz-t-KJ201 (Fig. 3).

By comparing the metabolic components of Piz-t-
KJ201 and NPB-KJ201, with the mock treatments, we
identified a variety of immune-related and antimicrobial
metabolites differentially produced among them. Trypto-
phan (Trp) metabolism acts as a common hub for the
biosynthesis of many immune-related compounds
(Alkhalaf and Ryan, 2015). On the one hand, many of
these metabolites are well known for their antioxidant
properties and support cell wall reinforcement after
pathogen infection (Ishihara et al. 2008). Alternatively,
Trp can be incorporated by bacteria into a large array of
bioactive natural products that act as antifungal com-
pounds (Alkhalaf and Ryan, 2015). Therefore, Trp-
derived metabolites may also systemically influence the
composition and structure of microbes. In our study,
along with the differential accumulation of some Trp-
derived metabolites such as N-cis-sinapoyltyramine and
N-cis-feruloyltyramine, we observed an obvious differ-
ence in the microbial endosphere communities of the
KJ201 treatments (Fig. 2), in which Proteobacteria and
Chloroflexi were increased in Piz-t-KJ201 and NBP-
KJ201, respectively. However, fungal richness was cor-
respondingly reduced (Fig. 3). Experimental validation in
future studies will confirm the direct or indirect role of
Trp-derived metabolites on microbial community com-
position and structure.

Based on all of these results, we propose a hypo-
thetical model for the whole infection process. Ini-
tially, fast activation of defense-related metabolites
and systemic acquired resistance would have occurred
in response to KJ201 treatment. Subsequently, some
bacterial growth would benefit from the Trp-derived
metabolites, which would lead to an increase in endo-
sphere bacterial communities that feed on those me-
tabolites and a decrease in endosphere fungal
diversity and richness in both NPB-KJ201 and Piz-t-
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KJ201 treatments compared with their corresponding
mock treatments.

Many unidentified taxa were enriched in the endophytes
of Piz-t-KJ201 and rhizosphere soils of NPB-KJ201 (Fig. 4),
a finding that was consistent with previous studies that also
identified a substantial proportion of unclassified sequences
(Edwards et al. 2015). These unknown members may be
due to gaps between genetic knowledge and old species de-
scriptions (Tedersoo et al. 2018). Fortunately, a protocol for
high-throughput bacterial isolation from root samples has
been established, and a growing number of new updated
online dabtabases are available for the best nomenclature
and identification of microbial species, which facilitates the
identification of unknown taxa by their functional traits
(Prakash et al. 2017; Zhang et al. 2021).

Although our results have potential significance in
managing diseases by modulating the composition of soil
microbiota, further experiments are needed to confirm
the functional and ecological roles of some microbes, es-
pecially for those unidentified communities over time
and space, and to understand the interaction of the me-
tabolites with microbial communities. Therefore, com-
prehensive combined approaches are required to expand
our understanding of microbial communities and meet
agricultural needs.

Conclusion

In this study, we provide a complete survey of the bacter-
ial and fungal rhizospheric and endospheric microbiota in
both Piz-t-KJ201 and NPB-KJ201. The NPB-KJ201 plants
had the highest endospheric bacterial diversity and rich-
ness across the four bacterial endocompartments but had
the lowest endospheric fungal richness across the eight
endocompartments. In contrast, the Piz-t-KJ201 plants
possessed distinct and greater endospheric bacterial diver-
sity and richness than the corresponding Piz-t-mock
plants but had the lowest abundance of endospheric fun-
gal diversity across the eight endocompartments. In
addition, statistically significant enrichment of the phyla
Proteobacterial and Ascomycota occurred in the endo-
spheric communities of Piz-t-KJ201 and NPB-K]J201, re-
spectively. Further comparative metabolomics analysis
between Piz-t-KJ201 and NPB-KJ201 strengthened that
some metabolites may involved in those bacterial commu-
nity changes. Taken these results together demonstrate
that the proposed role of the rice genotype and inocula-
tion in determining the composition and assembly of
root-associated microbial communities.

Methods

Materials and Methods

Soil Collection, Plant Materials and Blast Isolates

The soil was collected from a single rice field site at the
same moment in Fuzhou, Fuyjian, China (E119°18’,
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N26°05). The rice cultivars NPB and NPB-Piz-t were
used in this experiment, and NPB-Pizt was generated as
described in our previous study (Tian et al. 2018). Rice
seedlings were grown approximately 2 ~ 3 weeks to 3-4
leaves in a pot filled with local soil that contained a mi-
crobial community structure that retained natural condi-
tions. The plants were inoculated by spraying at a
concentration of 5x 10° spores/ml, and a mock treat-
ment served as the control. After inoculation, the seed-
lings were maintained in the dark for 24h at
approximately 28 °C and then maintained at humidity of
more than 95% to favour disease development.

Sample Collection

Soil samples and roots were collected at seven days
post-inoculation when NPB-KJ201 plants were obviously
diseased (Fig. 1 a). Rhizosphere soils were sampled using
a root shaking method as previous described (Inceoglu
et al. 2010), The roots and above-ground parts were seg-
regated for endosphere microbiota and metabolomics
analyses, respectively. The soil remaining attached on
the roots was considered to be rhizosphere soil and the
remaining roots were defined as the endosphere com-
partment. After the harvested roots were surface steril-
ized, the surfaces of these roots were rubbed onto Luria-
Bertani (LB) plates for incubating overnight at 30 °C, and
those that showed no microbial growth were used for
the further experiment. Three biological replicates for
each of these lines were collected for each inoculation
treatment. In total, 12 root endosphere samples and 12
rhizosphere soil samples were collected for 16 s rRNA
and ITS1 amplicon sequencing. The above-ground sam-
ples were collected for a metabolomics analysis.

16S rRNA and ITS1 Gene Amplicon Sequencing

Total DNA was extracted from soil using a DNA Kit
(Omega Bio-tek, Norcross, GA, USA) according to the
manufacturer’s instructions. The DNA quality and con-
centration were monitored using a NanoDrop 1000
spectrophotometer (Thermo Scientific, Waltham, MA,
USA). The total DNA was used as PCR templates, and
16S amplicon libraries were generated using the PCR
primers 319F (5'-CCTACGGGNGGCWGCAG-3") and
806R (5'-GGACTACHVGGGTWTCTAA T-3") with an
adapter (index) that targets the V3 and V4 variable re-
gions of bacterial/archaeal 16S rRNA genes (Walters
et al. 2015; Eyre et al. 2019). Strongly amplified products
were chosen for additional experiments. ITS1 amplicon
libraries were generated using the PCR primers ITS1F
(5'-CTTGGTCATTTAGAGGAAG.

TAA-3") and ITSIR (5'-GCTGC GTTCTTCATC
GATGC-3") (Gardes and Bruns, 1993; White et al. 1990;
Usyk et al., 2017). PCR amplifications were conducted
using Phusion® High-Fidelity PCR Master Mix with GC
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Buffer (New England Biolabs, Ipswich, MA, USA), and
PCR products were detected using 2.0% agarose gels.
Target bands were purified using a QIAquick Gel Ex-
traction Kit (Qiagen, Hilden, Germany). The PCR prod-
ucts were used for 16S rRNA, and the ITS1 sequencing
was conducted at the Novogene Institute (Beijing,
China) using the MiSeq platform. Briefly, DNA was frac-
tionated by ultrasound. Sequencing libraries were then
prepared with Illumina’s instructions, and an Illumina
MiSeq platformc (2017) followed by HiSeq2000 (2016).

Data Processing

OTUs and microbial diversity analyses were conducted
as previously described (Edwards et al. 2015; Zhong
et al, 2019). The standard operating procedure of
QIIME (V1.7.0) was employed to filter the sequencing
quality for each forward and reverse fastq file. The se-
quences were demultiplexed into each sample based on
whether they were derived from bacterial or fungal se-
quences, and then paired-end sequences of each sample
were trimmed for their quality and length using Trim-
momatic (V0.36) (Bolger et al., 2014), yielding 1,862,933
and 2,459,716 high quality reads for the 16S V3-V4 and
ITS1datasets, respectively. Finally, operational taxonomic
units (OTUs) were picked using the script pick_otus.py
of QIIME via the UCLUST method at a similarity cutoff
of 97%. Taxonomic classification of the representative
sequence for each OTU was done using QIIME’s version
of the Ribosomal Database Project’s classifier against the
Greengenes 16S rRNA and Unite ITS database (13_5 re-
lease) using default parameters. Chloroplast, mitochon-
drial, and unclassified reads were discarded. The
representative sequences for each OTU were aligned
using PyNAST in QIIME. All samples were randomly
rarefied to the lowest number of sequences (9497 and
63,153 sequences for the 16S V3-V4 and ITSldatasets,
respectively) for further analysis.

Venn diagrams of the taxonomic assignment were
constructed using the VennDiagram V1.6.20 package
(Chen and Boutros 2011). Rarefaction curves of Chaol
and Shannon index were analysed by using Perl scripts
in QIIME. Weighted and Unweighted UniFrac distrance
were calculated from normalized OTU tables for Beta
Diversity analysis, PCA utilizing the Weighted and Un-
weighted UniFrac distrances were calculated using the R
package Ape. ANOSIM analysis was carried out using R
(version: 3.4.3) and the Vegan package in R (version:
2.3.0). A permutation testing (999 permutations) was
performed to validate the fitness of ANOSIM models.
LEfSE analysis was performed using the online LEfSE
programme based on a normalized OTU table. For
LEfSE analysis, the Kruskal-Wallis rank sum test was
employed to test for significantly different species within
groups at an alpha value of 0.05 and a threshold of 3.
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Co-occurrence analyses were carried out using the Py-
thon module ‘SparCC’ and network visualizations were
constructed using Cytoscape (v. 3.4.0) and Gephi (Shan-
non et al. 2003).

Metabolomics Measurement and Analysis

The freeze-dried above ground parts were crushed using
a mixer mill (MM 400, Retsch technology, Haan,
Germany) with zirconia beads for 1.5min at 30 Hz. A
total of 100 mg powder was weighed and extracted over-
night at 4 °C with 0.6 ml 70% aqueous methanol. Follow-
ing centrifugation at 10,000g for 10 min, the extracts
were absorbed (CNWBOND Carbon-GCB SPE Cart-
ridge, 250 mg, 3 ml; ANPEL, Shanghai, China, www.
anpel.com.cn/cnw) and filtered (SCAA-104, 0.22 um
pore size; ANPEL, Shanghai, China, http://www.anpel.
com.cn/) for UPLC-MS/MS analysis.

The hierarchical cluster analysis (HCA) results of sam-
ples and metabolites were presented as heatmaps with
dendrograms. HCA was conducted using an R package p
heatmap (Qin et al. 2019). KEGG enrichment analysis
identified metabolites that were annotated using the
KEGG Compound database (http://www.kegg.jp/kegg
/compound/), and the annotated metabolites were then
mapped to the KEGG Pathway database (http://www.
kegg.jp/ kegg/pathway.html).
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Additional file 1: Fig. S1. ANOSIM analysis was performed based on a
Bray-Curtis distance matrix from each compartment to calculate the dif-
ferences between rhizosphere soils and endosphere compartments. Per-
mutation test, number of permutation is 999. Bacterial communities,
A:NPB-Mock-B.R, B: Pizt-Mock-B.R, C: NPB-KJ201-BR, D: Piz-t-KJ201-B.R,
E:NPB-Mock-BE, F: Pizt-Mock-B.E, G: NPB-KJ201-B.E, H: Piz-t-KJ201-B.E; Fun-
gal communities, ANPB-Mock-FR, B: Pizt-Mock-F.R, C: NPB-KJ201-F R, D:
Piz-t-KJ201-F.R, EENPB-Mock-F E, F: Pizt-Mock-F.E, G: NPB-KJ201-F.E, H: Piz-t-
KJ201-F.E.

Additional file 2: Fig. S2. Venn map of bacterial and fungal
communities in the rhizospheres soils and endosphere of NPB-KJ201 and
Piz-t-KJ201 plants. Bacterial communities, A:NPB-Mock-BR, B: Pizt-
Mock-B.R, C: NPB-KJ201-B.R, D: Piz-t-KJ201-B.R, ENPB-Mock-BE, F: Pizt-
Mock-B.E, G: NPB-KJ201-B.E, H: Piz-t-KJ201-B.E; Fungal communities,
ANPB-Mock-F R, B: Pizt-Mock-F.R, C: NPB-KJ201-F R, D: Piz-t-KJ201-F R,
E:NPB-Mock-F.E, F: Pizt-Mock-F.E, G: NPB-KJ201-F.E, H: Piz-t-KJ201-F.E.

Additional file 3: Fig. S3. Indicator fungal groups across 8
compartments with LDA values higher than 3.LDA: linear discriminant
analysis. ANPB-Mock-F.R, B: Pizt-Mock-F.R, C: NPB-KJ201-F.R, D: Piz-t-KJ201-
F.R; ENPB-Mock-F.E, F: Pizt-Mock-F.E, G: NPB-KJ201-F.E, H: Piz-t-KJ201-F.E.
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Additional file 4: Fig. S4. Indicator bacterial groups across 8
compartments with LDA values higher than 3. LDA: linear discriminant
analysis. ANPB-Mock-B.R, B: Pizt-Mock-B.R, C: NPB-KJ201-BR, D: Piz-t-
KJ201-B.R; EENPB-Mock-B.E, F: Pizt-Mock-B.E, G: NPB-KJ201-B.E, H: Piz-t-
KJ201-B.E.

Additional file 5: Table S1. OTUs for bacterial and fungal communities.

Additional file 6: Table S2. Topphylum for bacterial and fungal taxa
across 8 compartments.

Additional file 7: Table S3. Statistical table of alpha diversity index for
bacterial and fungal communities.

Additional file 8: Table S4. PCA for bacterial and fungal
compartments.

Additional file 9: Table 5. The significance difference metabolism of
Piz-t-KJ201 and NPB-KJ201.

Additional file 10: Table S6. The statistic analysis of KEGG enrichment
for each group.
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